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1 Python demo of Forced Align with HMM-GMM

This demo walks through how to use a Hidden Markov Model-Gaussian Mixture Model (HMM-
GMM) architecture to perform Forced Align. I assume decent familiarity with Python and the
Numpy library, though I try to explain the libraries and methods I use in my code as much as
possible. I assume little machine learning background and explain models as best I can when they
come up. However, this is not meant to be a tutorial in machine learning per se, but rather an
illustration of how a particular family of models can be implemented in Python, with the goal of
giving the reader the chance to play around with the inner workings of algorithms they may have
only seen before displayed as neat, abstracted equations in ML textbooks that bely the complexity
of their implementation and usage.

This notebook can be seen as a companion to chapters 6 and 9 of Juarafsky and Martin 2009, though
I go about it in a somewhat different order, introducing Gaussian Mixture Models for modeling the
acoustics of phones first and then introduce sequence modeling with Hidden Markov Models. I try
to make my notation as close to theirs as possible, and also reference pages and sections from their
textbook for further reading on the topics I discuss. By no means do I pretend to improve upon
their explanation, I merely present a sandbox for demonstrating what they explain. I hope that
the explanations I have left make this notebook self-contained, though I recommend referencing
the Jurafsky and Martin book for deeper explanation as desired.

Code and resources for this demo can be found in this github repo. For purposes of the demo
I have recorded and segmented myself producing five words consisting of the phones [, i, 1, n],
namely ‘lawn’, ‘lean’, ‘kneel’, ‘knee’, ‘gnaw. The audio is found in ailn.wav, segmentations
in ailn.TextGrid and the data file in ailn.csv, with a Python script using parselmouth in
gather_measures.py for generating the acoustic measures should you wish to record your own
audio for use in the demo. The features used are the first three formants (‘f1’, ‘f2°, ‘f3") and the

amplitude envelope (‘amp’).

As a side note, to avoid the inconvenience of typing the IPA symbol [] repeatedly and because
there is no [a] here in question to confuse it worth, I will write [a] instead of [] throughout this
post.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import torch

import seaborn as sb
torch.manual seed(1337)


https://github.com/rain1024/slp2-pdf
https://github.com/markjosims/forced-align-demo

[1]: <torch._C.Generator at 0x120d01cd0>

First, let’s load in our dataset with Praat TextGrid data.

[2]: csv_path = 'ailn.csv'
df = pd.read_csv(csv_path)
df

[2]: f1 f2 £3 amp phone word word_ipa \
0 308.842307 691.112245 2183.135206 66.923292 1 lawn lan
1 342.378196 734.724329 2186.841639 69.177411 1 1lawn lan
2 362.149719 764.074480 2210.458974 70.539616 1 lawn lan
3 356.570667 762.745254 2225.582023 71.400740 1 1lawn lan
4 357.828687 758.569292 2206.414437 72.209283 1 lawn lan
345 755.145121 805.773587 2260.783925 75.332562 a gnaw na
346 619.998312 805.533887 2206.163646 74.449697 a gnaw na
347 585.264409 806.373248 2106.831388 73.476442 a gnaw na
348 465.633125 818.948885 2016.998327 72.475936 a gnaw na
349 436.861831 819.351235 2057.549432 71.271442 a gnaw na
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[350 rows x 8 columns]
Let’s plot our data. Note there are four features, so we’ll only be able to view two at a time.

[3]: # to make plotting easier
color_map = {

'a': 'purple',
'i': 'blue',
'1': 'green',
'n': 'red',

}
df['color']=df ['phone'] .map(color_map)



[4] :

[5]:

# try swapping "z and "y  for other features!
sb.scatterplot(data=df, x='f1', y='f2', hue='phone', palette=color_map)
plt.show()
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2 Dimensionality reduction

All of the methods we are using would work fine on our four-feature set. In fact, it’s typical to use
a much larger set of 39 features called MFCCs (Jurafsky & Martin 2009, Ch. 9, p 297). However,
this is a simplified toy example, and so visualization is a high priority. For that reason, we’ll reduce
our four-feature set to two features using tSNE, a dimensionality reduction algorith. We can use
the TSNE class from sklearn.manifold to easily reduce our data to two dimensions. While we’re
at it, let’s split the data into features for each individual phone.

Note we convert the output of TSNE to a pytorch tensor since pomegranate, the library we will use
for modeling HMMs, uses pytorch as a backend.

from sklearn.manifold import TSNE

# define features, then shrink with TSNE
feat_cols = ['f1', 'f2', '£3', 'amp'l]
X_4d = df[feat_cols].to_numpy()



>
I

TSNE(Q) .fit_transform(X_4d)
torch.tensor (X)

>
]

# store feature for each phone separately

a_mask = df['phone']=='a"
i_mask = df['phone']=="'i'"
1_mask = df['phone']=='1"

n_mask = df ['phone']=='n'

a_feats = X[a_mask]
i_feats = X[i_mask]
1 _feats = X[1_mask]
n_feats = X[n_mask]

sb.scatterplot(x=X[:,0], y=X[:,1], hue=df['phone'], palette=color_map)
plt.show()
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3 Exploring separability

Let’s get a grasp of how easy it is to classify the four phones in our dataset, but to do that we



We’ll do this by performing k-means clustering, and seeing how well the resulting clusters match
with our phones. Before we do that, let’s save the phone labels to an array Y by converting each
unique character to an integer from 0 to 3.

[6]: # define labels
phones="'ailn'
phone_labels = df['phone'].to_numpy ()
Y=df ['phone'] .apply(phones.index) .to_numpy ()
np.array([*zip(phone_labels,Y)])

[6]: array([['1l', '
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Now let’s try running k-means clustering on the data with random centroids. We can evaluate these
centroids using v_measure_score, which measures the mutual information between the cluster
identities and the labels. By using this metric, we can get an idea of how closely the clusters we
generate map to phones regardless of whether the index assigned to each centroid matches the
number representing the phone it is closest to.

from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score, vV_measure_score

# fit model

kmeans = KMeans(n_clusters=4)
y_hat = kmeans.fit_predict(X)
v_measure_score(y_hat, Y)

/Users/markjos/projects/forced_align_writeup/.venv/lib/python3.12/site-
packages/threadpoolctl.py:1226: RuntimeWarning:
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Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at

the same time. Both libraries are known to be incompatible and this

can cause random crashes or deadlocks on Linux when loaded in the

same Python program.

Using threadpoolctl may cause crashes or deadlocks. For more

information and possible workarounds, please see
https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md

warnings.warn(msg, RuntimeWarning)
[7]: 0.7217863187793011

Let’s visualize the clusters and see how well they fit with phones.

[8]: sb.scatterplot(

x=X[:,0],
y=X[:,1],
hue=df ['phone'],
style=y_hat,
)
plt.show()
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When I ran it, I got cluster 0 & [n], cluser 1 = [l], cluster 2 ~ [i] and cluster 3 ~ [a].

[9]: # define centroids
sample_row = lambda m: m[torch.randint(0,len(m), (1,))]
sample_a = sample_row(a_feats)
sample_i = sample_row(i_feats)
sample_1 = sample_row(1l_feats)
sample_n = sample_row(n_feats)
start_centroids = torch.concat([sample_a, sample_i, sample_l, sample_n])

# fit model

kmeans_seeded = KMeans(init=start_centroids, n_clusters=4)
y_hat = kmeans_seeded.fit_predict(X)

accuracy_score(y_hat, Y)

[9]: 0.6371428571428571

Run it a few times. I get accuracies varying from 0.6-0.9. (HINT/SPOILER for the end of the
notebook when we seed the Gaussians with k-means produced here, you’ll want to have accuracy
closer to 0.9, so run it until you get around there. It should just take 2 or 3 tries at most.)

[10]: sb.scatterplot(

x=X[:,0],
y=X[:,1],
hue=df ['phone'],
style=y_hat,

)

plt.show()

14



[11]:

.
10 - %ﬁ‘
®
g o
h‘é ﬁ‘%
5 4 xxu#‘
X
S x
20
0 .'l-'l'.l ™ " :ﬂ
- [ U ) )
% phone 2
= 54 » |
3 - 1
“107 e i B, 4
ROy
.« 0 ko
4 LA
- 2 .Ht + _""t"'r
+ 3 -
—20 - T T T T T
—20 -10 0 10 20
MNone

Other than having the right ordering of phones [1,2,3,4] ~ [a,,,n], the clusters look about the
same as what we saw before.

4 Fitting phone models

Now let’s try a different clustering method, namely Gaussian Mixture Models (GMMs). A Gaussian
model is another name for a normal distribution. A GMM, then, is an ensemble or mizture of several
normal distributions. By using multiple normal distributions, we can parameterize data which are
not normally distributed as a whole. To see what this means, let’s visualize fitting a single Gaussian
versus two-Gaussian mixtures for each phone in our dataset.

This code uses the pomegranate library to fit a Gaussian Mixture Model for each phone. Later on,
we’ll see a bit more about what goes into fitting the parameters of a Gaussian model.

Warning: The GeneralMixtureModel call may return a _LinAlgError but I found that after
running it a few times it resolves itself. The error likely depends on some random state.

from pomegranate.gmm import GeneralMixtureModel
from pomegranate.distributions import *
import matplotlib.pyplot as plt
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[12]:

X_2d = X

phone_tuples = []

for phon
('a!
('i
(‘1
('n'

e, features, color in [
, a_feats, 'purple'),

, i_feats, 'blue'),

, 1_feats, 'green'),

, n_feats, 'red')

bi_model = GeneralMixtureModel ([Normal(), Normal()]).fit(features)
uni_model = Normal().fit(features)
phone_tuples.append((phone, features, color, bi_model, uni_model))

Now let’s plot it with some lovely code stolen from the Pomegranate docs on mixture models.

fig,axes

X_min =
X_max =
x = np.1

y_min

y_max
y = np.1l

assert 1
assert 1

XX, yy =
X_ = np.

=plt.subplots(2, sharex=True, sharey=True)

X_2d[:,0] .min(Q)
X 2d[:,0] .max()
inspace(x_min, x_max, num=100)
X 2d[:,1] .min(Q)
X_2d[:,1] .max()

inspace(y_min, y_max, num=100)
en(x)==100
en(y)==100

np.meshgrid(x, y)
array(list(zip(xx.flatten(), yy.flatten())))

for phone, features, color, bi_model, uni_model in phone_tuples:

pl =
p2

for

uni_model.probability(x_) .reshape(len(x), len(y))
bi_model.probability(x_) .reshape(len(x), len(y))

prob, ax in zip([pl,p2], axes):

# only show probability above 90th quantile, to minimize overlap
quantile20 = prob.quantile(0.90)
prob[prob<quantile20]=float('-inf')

# az.title("Single Gaussian", fontsize=12)
ax.contourf (xx, yy, prob, cmap=color.capitalize()+'s', alpha=0.5)
ax.scatter(features[:,0], features[:,1], s=10, color=color, alpha=0.2,,

~label=phone)

plt.lege

nd ()

plt.show()
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Again, results will vary on your random state but you should see one Gaussian contour for each
vowel in the top and twov in the bottom. It should be clear to see how the two-mixture model is
able to represent the data better than the single Gaussian models, especially for [I] which has two
discontuous clusters of points.

Now we’ve found a model which can accurately represent our phones, but this isn’t enough to
perform Forced Align. To do that, we need something which can model the acoustic sequence as a
whole, rather than just considering a single time frame.

5 Hidden Markov Models

Hidden Markov Models (HMMs) are sequence models. To understand Hidden Markov Models,
consider an example of a standard or ‘observable’ (non-hidden) Markov model (or Markov chain):
a bigram language model. A bigram language model represents the probability of a word given the
word immediately before it, P(word|previous_word). If a language model yields P(game|fun) =
0.2, then given the word ‘fun’ in any text sequence, there is a 20% chance the next word is ‘game.
Likewise, if P(homework|fun) = 0.001, then there is a 0.1% chance that the next word after ‘fun’
will be ‘homework.

Imagine we want to model a sequence of elements that we can’t observe or measure directly, for
example the phones that make up a spoken word or sentence. Given the audio waveform of speech,
we cannot straightforwardly determine what series of phones the speaker was producing when
making the utterance, else forced alignment and speech recognition would be trivial tasks. What we

17



[13]:

can measure are the acoustic observations, e.g. the formant and intensity values used above. Since
each acoustic observations was ‘produced’ by a given phone, and since different phones produce
different manner of observations, we should be able to reconstruct the sequence of phones from
a sequence of acoustic observations. These phones are the hidden states of the HMM, and when
modeling an HMM we talk about hidden states emitting observations.

HMMs are characterized by two probabilities: transition probability between states
i.e. P(state|previous_state) and emission probabilities, i.e. P(observation|state). The former is
directly analagous to the language model. We could say that a language model is a special HMM
where the states (words) are observable, and thus we don’t need any separate observations to re-
construct them. The latter, the emission probabilities, are represented by the Gaussian models we
saw earlier. Each Gaussian model is a different state, [a], [i], [l] or [n]. The value that, e.g., the
Gaussian model for [n] assigns to a given point on the plot is equivalent to P(point|[n]).

I’ve been using full words in my probability expressions so far, but for conciseness from now on I’ll
write O for the sequence of observations, o, for the observation at time ¢, () for the set of hidden
states (following the notation in Jurafsky & Martin 2009), s, for the hidden state at time ¢, and ¢
and j will generally be used as indices pointing to individual states in the set of hidden states.

There are three crucial problems associated with HMMs (Jurafsky & Martin 2009, Ch 6 p. 179):
1. Likelihood assignment. What is the likelihood of some sequence of observations O given the
HMM hidden states @ and parameters A, i.e. what is P(O|Q, A)? 2. Decoding. Given a sequence of
observations O, what is the most likely sequence of hidden states () that produced them, i.e. what
@ maximizes P(O|Q,\)? 3. Training. Given a sequence of observations O and hidden states @),
what parameters \ are optimal for describing the joint sequence, i.e. what A maximizes P(O|Q, \)?

Where ‘parameters’ refer to the transition and emission probabilities of the HMM.

To begin, we’ll load in and fit an HMM from the pomegranate to illustrate Forced Align inference.
Later we’ll construct our own ToyHMM class to peak into the math behind training HMMs.

First we instantiate a DenseHMM class. A DenseHMM is just an HMM with connections between
all states. If we were making a very large HMM with only a small subset of state transitions
allowed, using a SparseHMM would be more efficient computationally, but it’s not necessary for our
toy example. We add states to the HMM by passing GMM models to the add_distributions()
function, such that each state has a GMM associated with it.

from pomegranate.hmm import DenseHMM

hmm = DenseHMM()

phones = 'ailn'

(]

states

for features in [a_feats, i _feats, 1 feats, n_feats]:
states.append(GeneralMixtureModel ([Normal(), Normal(), Normal()]).
~fit(features))
hmm.add_distributions(states)

Let’s define a function so we can easily visualize the Gaussian distributions of a HMM-GMM.

18



[14]: def plot_gaussians(states, X=X, Y=Y, phones='ailn', colors=['purple', 'blue',

~'green', 'red']):
x_min = X_2d[:,0] .min()
x_max = X _2d[:,0] .max()
x = np.linspace(x_min, x_max, num=100)
y_min = X_2d[:,1] .min()
y_max = X_2d[:,1] .max()
y = np.linspace(y_min, y_max, num=100)

assert len(x)==100
assert len(y)==100

XX, yy = np.meshgrid(x, y)

X

_ = np.array(list(zip(xx.flatten(), yy.flatten())))

assert len(x)==100
assert len(y)==100
for state, phone, color in zip(states, phones, colors):

prob = state.probability(x_).reshape(len(x), len(y))
phone_X = X[Y==phones.index(phone)]

# only show probability above 90th quantile, to minimize overlap
quantile90 = prob.quantile(0.90)
prob[prob<quantile90]=float('-inf')

plt.contourf (xx, yy, prob, cmap=color.capitalize()+'s', alpha=0.5)
plt.scatter(phone_X[:,0], phone_X[:,1], s=10, color=color, alpha=0.2,,

~label=phone)
plt.legend()
plt.show()
plot_gaussians (hmm.distributions)
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Note that since we’re working with hand-segmented data, we can define the distributions for each
phone right off the bat, without needing any training. Later on we’ll see how to train these
distributions without needing pre-segmented data.

By adding the distributions we have defined our emission probabilities, but we haven’t set any
transition probabilities yet. We can set transition probabilities using the add_edge () function. For
pomegranate, this function takes as arguments two distributions (representing the two states) and
a float indicating the weight of the connection, equivalent to the transition probability between the
two edges.

[15]: for statel in states:
for state2 in states:
hmm.add_edge(statel, state2, 0.25)
hmm.edges

[15]: tensor([[-1.3863, -1.3863, -1.3863, -1.3863],
[-1.3863, -1.3863, -1.3863, -1.3863],
[-1.3863, -1.3863, -1.3863, -1.3863],
[-1.3863, -1.3863, -1.3863, -1.3863]])

When we view the edges, we see the weights are not 0.25 but -1.3863. This is because pomegranate
doesn’t store the edge probability per se but the log of the edge probability.

We’ve just made a very naive assumption here by giving an equal chance of transitioning from
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[16]:

[16]:

[17]:

[17]:

any one state to any other. For one, certain state sequences like [n,l] never occur in the corpus
(e.g. there’s no word like ‘unload’). Furthermore, given how long phone intervals are relative to an
individual audio frame, it’s generally much more likely that a state will transition into itself than
into any other state. Look at the phone sequence for ‘lawn’, for instance.

lawn_sequence = df.loc[df['word']=='lawn', 'phone']
lawn_str = ''.join(lawn_sequence)
lawn_str

'1111111111111aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnn’

Again, since we already have time alignments, calculating the transition probabilities is simply a
matter of counting how many times a given state i transitions to another state j divided by all
transitions out of i, as defined below (equation adapted from Jurafsky & Martin 2009, Ch. 6,
p. 188):

count(i—j)
count(i—s)

Ptransition <Z|.7) = >

seS

As Jurafsky & Martin (2009) show, we can represent this as a matrix of transition probabili-
ties a, where a,; is equivalent to P, qtion(i]7). For sake of readability I will name the matrix a
transition_mat in my code.

To calculate the transition_mat, we can start by counting all the transitions between states across
the corpus and save them to an intermediary matrix transition_counts. To make this easier,
let’s add a column 'last_phone' to our dataframe indicating the previous state before any row.
We'll treat each word as a single state sequence.

Note that we use special states for the beginning and end of the sequence, indicated by the Regex
characters '~' and '$'. We don’t have rows for last states in the dataframes, so to be able to count
transitions into the last states, we store a separate dataframe—we don’t merge the two since last
states have no observations, and later we’ll want to be able to easily slice out all of the observations
for a given word from the dataframe, whereas we won’t need the end state rows again after counting
transitions.

words = df['word'] .unique() # ['lawn’, 'lean’', 'kneel', 'knee', 'gnaw']
df['last_phone']=""
last_state rows = []
for word in words:
word_mask = df['word']==word
phone_seq = df.loc[word_mask, 'phone']
shifted_seq = np.insert(phone_seq, 0, '~')[:-1] # prepend '~' and cut off
~last state
df .loc[word_mask, 'last_phone']=shifted_seq

last_state_row = {'phone': '$', 'last_phone': phone_seq.iloc[-1], 'word':
wword}
last_state_rows.append(last_state_row)
df .head ()
f1 f2 £3 amp phone word word_ipa \
0 308.842307 691.112245 2183.135206 66.923292 1 lawn lan
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[18]:

[18]:

[19]:

[19]:

1 342.378196 734.724329 2186.841639 69.177411 1 lawn lan

2 362.149719 764.074480 2210.458974 70.539616 1 lawn lan

3 356.570667 762.745254 2225.582023 71.400740 1 lawn lan

4 357.828687 758.569292 2206.414437 72.209283 1 lawn lan
time color last_phone

0 1.939838 green -

1 1.946088 green 1

2 1.952338 green 1

3 1.9585688 green 1

4 1.964838 green 1

last_state_df = pd.DataFrame(last_state_rows)
last_state_df.head()

phone last_phone  word
0 $ n lawn
1 $ n lean
2 $ 1 kneel
3 $ i knee
4 $ a gnaw

Now we can iterate through each unique state and add their counts to the matrix. The matrix is
of shape (6 x 6), i.e. 4 phones and two boundary states.

torch.zeros((6,6))
“ailn'

transition_counts =
state_names = '
# count all non-final states
for i, statel in enumerate(state_names):
statel_mask = df['last_phone']==statel
for j, state2 in enumerate(state_names):
state2_mask = df['phone']==state?2
transition_counts[i,jl=len(df [statel_mask&state2_mask])
# count final state
for i, state in enumerate(state_names):
state_mask = last_state_df['last_phone']==state
transition_counts[i,-1]=len(last_state_df [state_mask])
transition_counts

tensor([[ 0., 0., 0., 2., 3., 0.1,
[ 0., 75., 0., 0., 1., 1.1,
[ o., 0., 103., 1., 1., 1.7,
[ o., 1., 1., 59., 0., 1.7,
[ o., 1., ., 0., 100., 2.1,
r o., 0., 0., 0., 0., 0.1D

Notice how much bigger the counts are along the diagonal of the matrix, which correspond to
instances of a state trainsitioning into itself. Also note the first column and last row are a bit
useless: we never transition into the initial state nor out of the final state. Nevertheless, including
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[20]:

[20]:

[21]:

[22]:

[22]:

[23]:

them in the matrix keeps the column and row indices consistent with what state they refer to.

Having calculated the transition counts, we need to transform these into probabilities by normalizing
by the number of transitions out of each state. We can do this by dividing each row by the sum of
all values on that row.

transitions_out = transition_counts.sum(axis=1)
# reshape to column vector so we divide by rTows
transitions_out=transitions_out.reshape((6,1))
transitions_out

tensor([[ 5.7,
[ 77.],
[106.],
[ 62.1,
[105.7,
[ 0.1

Again, since the bottom row is the final state there are no transitions out of it. To avoid dividing
by zero, we’ll just set the last element of transitions_out to 1, which won’t hurt anything as, of
course, 0/1 is still zero.

transitions_out[-1]=1
transition_mat=transition_counts/transitions_out
print(transition_mat)

tensor ([[0.0000, 0.0000, 0.0000, 0.4000, 0.6000, 0.0000],
[0.0000, 0.9740, 0.0000, 0.0000, 0.0130, 0.0130],
[0.0000, 0.0000, 0.9717, 0.0094, 0.0094, 0.0094],
[0.0000, 0.0161, 0.0161, 0.9516, 0.0000, 0.0161],
[0.0000, 0.0095, 0.0190, 0.0000, 0.9524, 0.0190],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]1)

To check we did our math right, let’s make sure each row (except the last) now sums to 1.

transition_mat.sum(axis=1)

tensor([1., 1., 1., 1., 1., 0.1)

We can now use this matrix to re-initialize the model edges. We can use the start attribute of the
HMM to represent the start state. Recall that earlier we saved the distributions to a list named
states.

def add_hmm_edges(hmm, transition_mat, states):
for i, statel in enumerate([hmm.start,]+states):
for j, state2 in enumerate(states+[hmm.end,], start=1):
weight = transition_matl[i,j]
if weight==0:
continue
if i==0 and j==len(states)+1:
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[23]:

[24] :

[24] :

[25]:

[25] :

[26]:

[26]:

continue
hmm.add_edge(statel, state2, weight)

add_hmm_edges (hmm, transition_mat, states)
hmm.edges, hmm.starts

(tensor([[-0.0263, -1.3863, -1.3863, -4.3438],
[-1.3863, -0.0287, -4.6634, -4.6634],
[-4.1271, -4.1271, -0.0496, -1.3863],
[-4.6540, -3.9608, -1.3863, -0.0488]1),

tensor([  -inf, -inf, -0.9163, -0.5108]))

Now that we’ve got our observation and transition probabilities taken care of, let’s look at how to
model the probability of an entire sequence.

6 Likelihood assignment

(Jurafsky & Martin 2009, Ch. 6, p. 179) Now that we’ve initialized the models parameters, let’s
look at how to get the probability for a given sequence of observations, P(O|Q, \). Recall that
every observation depends on the state the produced it, P(O|Q), and every state depends on
the previous state, P(q,|q,_;). The latter probability we can simply get via lookup from the
transition_mat object. To get the former, let’s see how to get probability for a given observation
from the distributions of the HMM using the probability() function.

a_gmm = hmm.distributions[0]

# re-use samples generated earlier as k-means centroids
a_gmm.probability(sample_a).item(), a_gmm.probability(sample_n).item()

(0.00053664471488446, 0.00010689154441934079)

Notice how small each number is. When modelling high-dimensional data, probabilities tend to
get infinitesimally small, and can even be so small the computer is forced to round them down
to zero. This problem is known as ‘underflow’;, and is one of the reasons that log probability
(straightforwardly, the log of the probability) is used more often than actual probability.

a_gmm.log_probability(sample_a).item(), a_gmm.log_probability(sample_n).item()
(-7.530174255371094, -9.143695831298828)

Unsurprisingly, sample_a has a much higher likelihood of being emitted by [a] than sample_n does.
Conversely, if we score the probabilities of the same samples using the model for [n]:

n_gmm = hmm.distributions[3]
n_gmm.log_probability(sample_n).item(), n_gmm.log_probability(sample_a).item()

(-4.46790075302124, -93.80657958984375)

The probability that sample_a was emitted by [n] is even smaller.
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Now let’s consider the joint likelihood of O and a specific sequence of hidden states @, i.e. P(O, Q|0).
We can model this as a product across all timesteps of the emission probability of the observation at
that time by the hidden state with the transition probability of the hidden state from the previous
hidden state. Let’s use the states and observations for the word ‘lawn’ as an example.

Since the product of many probabilities quickly becomes infinitesimal (a problem known as ‘under-
flow’), instead of multiplying probabilities we’ll be adding log probabilities.

[27]: lawn_mask = df['word']=='lawn'
word_observations = X[lawn_mask]
word_states = df.loc[lawn_mask, 'phone'].apply(state_names.index)
word_prev_states = df.loc[lawn_mask, 'last_phone'].apply(state_names.index)

# turn into log probs
transition_mat_log = (transition_mat+le-10).log() # avoid taking log of O

word_likelihood = O
for observation, state_i, prev_state_i in zip(word_observations, word_states,
~word_prev_states):
state_distribution = hmm.distributions[state_i-1] # shift left since therey,
~1sn't any distridbution for start
emission_logprob = state_distribution.log_probability(observation.
oreshape(1,2))
transition_logprob = transition_mat_logl[prev_state_i, state_il
word_likelihood+=emission_logprob+transition_logprob
word_likelihood.item()

[27]: -327.7899169921875

Let’s do the same again but with the same observations and a random sequence of states and see
how the likelihood changes. Let’s also encapsulate this into a function so we can use it later on.

[28]: word_states_rand = np.random.choice(4, size=word_states.shape)

def joint_state_observation_prob(states, observations):
log_likelihood = O
prev_states = np.insert(states, 0, 0)[:-1]
for observation, state_i, prev_state_i in zip(observations, states,,
~prev_states):
state _distribution = hmm.distributions[state_i-1] # since there isn't,
—any distridbution for start
emission_logprob = state_distribution.log_probability(observation.
~unsqueeze (0))
transition_logprob = transition_mat_logl[prev_state_i, state_i]
log_likelihood+=emission_logprob+transition_logprob
return log_likelihood.item()
word_likelihood_rand = joint_state_observation_prob(word_states_rand,,
~word_observations)
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[28]:

[29]:

[29]:

[30]:

[30]:

word_likelihood_rand

-5469.267578125

To see how big that difference is, exponentiate the difference in order to find the ratio of likelihoods,
you should get inf!

(word_likelihood-word_likelihood_rand) .exp()

tensor ([inf])

Since we’re considering the likelihood of the observations O regardless of the particular hidden state
sequence, we have to consider every hidden state for each time step. To do this, we need to
consider every possible permutation of hidden states across all timesteps. Let’s start by just trying
to compute this list of permutations without scoring any probabilities:

from tqdm import tqdm

word = 'lawn'
word_features = df.loc[df['word']=='lawn', feat_cols].to_numpy()

def get_state_permutations(features):
state_permutations = [[0]]
for _ in tqdm(range(len(features))):
timestep_paths = []
for state_i in range(l, len(state_names)):
for path in state_permutationmns:
timestep_paths.append(path+[state_i,])
state_permutations.extend(timestep_paths)
return state_permutations
permutations = get_state_permutations(word_features[:10]) # try more iterations,
<1f you dare

len(permutations)
100%| | 10/10 [00:09<00:00, 1.08it/s]
9765625

This has a time complexity of O(n’), with n being the number of states and T be-
ing the number of timesteps. Concretely, each iteration of the loop is n times as long
as the previous. So, even for this relatively simple example, it takes at least 47 =
1427247692705959881058285969449495136382746624(!!!) calculations to complete.

We can do a lot better using a simple dynamic programming trick: instead of computing the
probability each path separately, recursively compute the probability of sub-paths and build off of
each sub-paths probability. We do this by creating a forward trellis, which we represent with the
matrix forward_mat containing one row for each state and one column for each timestep. Each
cell represents the probability of all possible subpaths starting from the beginning and leading
into that cell.
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[31]:

[31]:

To compute this, we start by initializing each row (state) of the first column (i.e. first timestep)
as the probability of transitioning into that state from the initial state multiplied by the emission
probability of the initial observation for the given state.

Then, for each subsequent timestep we calculate the forward value for a given state as the sum
for all previous states of the forward value of that state at the previous timestep multiplied by the
transition probability of that state into the current state.

# set matrices to floatl28 to prevent underflow

# (using numpy as pytorrhc doesnt support float128)

forward_mat = np.zeros((6,len(word_observations)), dtype=np.float128)
transition_mat_128 = transition_mat.numpy() .astype(np.float128)

# initial timestep
initial_observation = word_observations[0]
for j, state in enumerate(states, start=1):
transition_prob=transition_mat_128[0,j] # where 0 indicates the initialy
<state
emission_prob=state.probability(initial_observation.unsqueeze(0)).item()
forward_mat [j,0]=transition_prob*emission_prob

# remaining timesteps
for t, observation in enumerate(word_observations[1:], start=1):
for j, curr_state in enumerate(states, start=1):
emission_prob = curr_state.probability(observation.unsqueeze(0)).item()
for i, _ in enumerate(states, start=1):
transition_prob = transition_mat_128[1i,j]
prev_forward = forward_mat[i,t-1]
forward_mat[j,t]+=prev_forward+*emission_prob*transition_prob
# print (forward_mat[:,t]) # uncomment to see how quickly numbers,
sunderflow
# transitions to end state
for i, state in enumerate(states, start=1):
transition_prob=transition_mat_128[i,-1] # where -1 indicates the final,
<state
prev_forward=forward_mat[i,-1]
forward_mat[-1,-1]+=prev_forward*transition_prob
word_prob=forward_mat[-1,-1]
word_prob

3.1844271695947884166e-143

You should get a number with over 100 zeroes after it. That’s an absurdly small number. This
happens because we’re multiplying probabilities rather than adding log probabilities. Uncomment
the print statement to visualize how quickly the probabilities underflow.

If we want to use logs, we’ll have to change the code a bit, since in the lowermost for loop we’re
adding probabilities together, which is a problem since ) log(p) # log > p. Instead, we’ll have to
exponentiate the log probabilities to convert them back into regular probabilities, sum and then
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take the log. Unfortunately, because of this, we still need to use np.float.128, but now we only
need it for that particular calculation, and we can store the forward_mat with doubles.

First, let’s define a function that will exponentiate, add, and log an array of values for us to make
our code a bit cleaner.

[32]: def add_logprobs(log_probs: np.ndarray) -> float:

if hasattr(log_probs, 'detach'):
log_probs = log_probs.detach()

# need quadruple precision to prevent underflow

if log_probs.dtype is not np.float128:
log_probs=np.array(log_probs, dtype=np.floatl128)

probs=np.exp(log_probs)

probs_sum=probs.sum()

logprob_sum=np.log(probs_sum)

return logprob_sum.astype(float)

Now let’s define the forward function.

[33]: def forward(observations, transition_mat_log, states):
forward mat = torch.full((len(states)+2,len(observations)), -torch.inf)
# initial timestep
forward_mat[0,0]=0 # always start in initial state
initial_observation = observations[0]
for j, state in enumerate(states, start=1):
transition_logprob=transition_mat_log[0, j]
emission_logprob=state.log_probability(initial_observation.
~reshape([1,2]))
forward_mat[j,0]=transition_logprob+emission_logprob
# remaining timesteps
for t, observation in enumerate(observations[1:], start=1):
for j, curr_state in enumerate(states, start=1):
emission_logprob = curr_state.log_probability(observation.
~reshape([1,2])) .item()
logprobs = torch.zeros(len(states))
for i, _ in enumerate(states, start=1):
transition_logprob = transition_mat_logli, j]
prev_forward = forward mat[i,t-1]
logprobs[i-1]=prev_forward+transition_logprob
logprob=add_logprobs (logprobs)
logprob+=emission_logprob
forward_mat [j,t]=logprob
# transitions to end state
end_logprobs = torch.zeros(len(states))
for i, state in enumerate(states, start=1):
transition_logprob=transition_mat_logl[i,-1]
prev_forward = forward_mat[i,-1]
end_logprobs[i-1]=transition_logprob+prev_forward
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[33]:

[34]:

[34] :

[35]:

[35]:

logprob=add_logprobs(end_logprobs)

forward_mat[-1,-1]=logprob

return logprob, forward_mat
logprob, forward_mat = forward(word_observations, transition_mat_log, states)
logprob

-328.11163330078125

Side note: in real-world implementations of the Forward and related sequence algorithms, underflow
can be further addressed by scaling the probabilities during calculation. See this presentation and
this post for more info.

As a sanity check, let’s check that pomegranate gives us the same log probability for the sequence.

hmm.log_probability(word_observations.unsqueeze(0)).item()

-327.5914001464844

Out of curiosity, let’s see how the probability changes when we reverse the order of observations.

logprob, forward _mat = forward(word_observations.flip(0), transition_mat_log,,
~states)
logprob

-343.62776004407567

Unsurprisingly, it’s lower since we’re traversing that states in the opposite direction to what the
edge weights were tuned on.

7 Decoding

(Jurafsky & Martin 2009, Ch. 6, p. 184)

The next question to answer is how to get the optimal state sequence @ for producing an observation
sequence O. We can do this in a similar way to how we computed overall likelihood, save that instead
of aggregating the probability of each path, we instead return the maximum likely path. Instead
of computing a Forward trellis, then, we compute a Viterbi trellis. Where each cell in the Forward
trellis represents the cumulative likelihood of all paths leading to that cell, each cell in the Viterbi
trellis represents the likelihood of the single most likely path leading to that cell.

In order to reconstruct the path, we also need to store a backtrace matrix. For a given state j at
time ¢, this matrix stores the index of the most likely immediately preceding state ¢ at time ¢t — 1
that led to that state. To calculate the most likely path, we use the backtrace to figure out what
state was most likely to precede the final state, and what state was most likely to precede that,
and so on through all timesteps.

One nice thing about this algorithm is that not worrying about cumulative probabilities means we
don’t need to convert log probabilities back into regular probabilities at any point, since at no point
do we sum over several probabilities. Instead, we can work in log probability space the whole time.
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[36]:

A side effect of this is that we don’t actually need to work with for-loops over states of the previous
step. Since all we're doing is adding probabilities, we can just take the vector of previous states
from the Viterbi matrix and add it to the vector of transition probabilities into the current state,
then add the emmission probability to the resulting vector.

reversed_enum = lambda a, start=0: reversed(list(enumerate(a, start=start)))

def viterbi(observations, transition_mat_log, states):
viterbi_mat = torch.full((len(states)+2,len(observations)), fill_value=-np.
<inf)
backtrace = torch.zeros_like(viterbi_mat, dtype=int)

# initial timestep - same as before
initial_observation = observations[0]
for j, state in enumerate(states, start=1):
transition_logprob=transition_mat_logl[0,j]
emission_logprob=state.log_probability(initial_observation.
~reshape([1,2]))
viterbi_mat[j,0]=transition_logprob+emission_logprob

# remaining timesteps
for t, observation in enumerate(observations[1:], start=1):
for j, curr_state in enumerate(states, start=1):
emission_logprob = curr_state.log_probability(observation.
~reshape([1,2]))

prev_viterbi_vec = viterbi_mat[:,t-1]
transition_vec = transition_mat_logl[:, j]
path_likelihoods = prev_viterbi_vec+transition_vec+emission_logprob

max_path_likelihood = path_likelihoods.max()
likely_prev_state = path_likelihoods.argmax() # argmaz returns the,
<index of the maz value

viterbi_mat[j,t]=max_path_likelihood
backtracel[j,t]l=likely_prev_state

# transitions to end state

final viterbi_vec = viterbi mat[:,-1]

final_transition_vec = transition_mat_log[:,-1]

final likelihoods = final viterbi_vec + final_ transition_vec
max_final_likelihood = final_likelihoods.max()
likely_prefinal_state = final_likelihoods.argmax()

viterbi_mat[-1,-1]=max_final_ likelihood
backtrace[-1,-1]=1ikely_prefinal_state

# decode path from backtrace
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[36]:

[37]:

[37]:

[38]:

prev_state = likely_prefinal_state
path = torch.zeros(len(observations+2), dtype=int)
path[-1]=-
# so we can iterate thru columns
backtrace_iter = backtrace.transpose(0,1)
for t, idcs in reversed_enum(backtrace iter):
path[t]=prev_state
prev_state=idcs[prev_state]
return path, viterbi_mat
path, viterbi_mat = viterbi(word_observations, transition_mat_log, states)
path

tensor([3, 3, 3, 3, 3,3, 3,3,3,3,1,1,1,1,1, 1,1, 1,1,1,1, 1,1, 1,
1, 1,1,1,1,1,1,1, 1, 1,1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1,
1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 41)

If we do a quick substitution of state indices with there string representation, we can see that we’ve
correctly predicted the sequence [lan] for ‘lawn’.

"' . join([state_names[i] for i in path])
1 1
111111111]1aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnn

Let’s compare our output with the output of Pomegranate’s viterbi function, and also with the
ground truth from the Praat textgrids.

for word in words:
word_mask = df['word']==word
word_X = X[word_mask]
word_Y = df.loc[word_mask, 'phone'].tolist()
print (word)
pomegranate_preds = hmm.viterbi(np.reshape(word_X, (1,-1,2))).squeeze()
# add 1 since Oth state for pomegranate is [a], mot start
pomegranate_decoded = ''.join([state_names[i+1] for i in pomegranate_preds])
print ('Pomegranate viterbi:\t',pomegranate_decoded)

viterbi_preds, _ = viterbi(word_X, transition_mat_log, states)
viterbi_decoded = ''.join([state_names[i] for i in viterbi_preds])
print('Our viterbi:\t\t', viterbi_decoded)

print ('Ground truth:\t\t', ''.join(word_Y))

lawn

Pomegranate viterbi:
1111111111aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalaaannnnnNnnnNnNNNnNNnnnnnnnnn
Qur viterbi:
1111111111aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnNnNNNnnNnNNnNNNnNNNnnnnnn
Ground truth:
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1111111111111aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnn
lean
Pomegranate viterbi:

kneel

Pomegranate viterbi: nnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiliiig
111111111111121111111111111111

Our viterbi: nnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiiiiiiiiiillll
1111111111111211111111211111111

Ground truth: nnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiiiiiiiiillill
1111111111111211311111121111111

knee

Pomegranate viterbi:
nnnnnnnnonnnnnnnnnnnnnnniiiiiiiiiiiiiiidiiidiiidiidiiidiiidiiii
Qur viterbi:
nnnnnnonnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiidiiiiididiiiiidiiiiiii
Ground truth:
nnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiididiiiiiiiiiiii
gnaw

Pomegranate viterbi:
nnnnnnnnnnnnnnnllaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaall
Qur viterbi:
NNNNNNNNNNNNNNnaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Ground truth:
NNNNNNNNNNNNNNNNaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Pretty similar! There most unexpected difference (when I ran it) is the insertion of some anomalous
[l]‘s before and after [a] in the Pomegranate output for 'gnaw.

Let’s use the Viterbi matrix to visualize the relative probability of each state over the course of the
word.

[39]: fig, axes = plt.subplots(nrows=3,ncols=2)

flat_axes=axes.flatten()

for i,word in enumerate(words):
word_mask = df['word']==word
word_X = X[word_mask]
word_Y = df.loc[word_mask, 'phone'].tolist()
_, viterbi_mat = viterbi(word_X, transition_mat_log, states)
plot_viterbi = viterbi_mat.transpose(0,1)[:,1:-1]
flat_axes[i] .plot(plot_viterbi, label=[*state_names[1:]])
flat_axes[i] .set_title(word)

handles, labels = flat_axes[0].get_legend_handles_labels()
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[40] :

fig.legend(handles, labels, loc='upper right')
plt.tight_layout(rect=[0, 0.05, 1, 11)

plt.show()
lawn lean a
0 1 0 1 !
—_
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=500 1 —500 - n
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kneel knee
0 1 0 A
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Well that’s a little hard to interpret. Naturally, all of the probabilities decrease over time, as the
longer the sequence becomes the lower the overall probabilities. One line crossing another indicates
a transition between phones. To make this more interpretable, we can compute a softmax over each
timestep to get relative probabilities for each phone rather than overall likelihood of the sequence.

from scipy.special import softmax

def plot_viterbi(states=None, transition_mat=None, hmm_dict=None,,,
wtransition_mat_dict=None):
fig, axes = plt.subplots(nrows=3,ncols=2)
flat_axes=axes.flatten()
for i, word in enumerate(words):
if transition_mat_dict:
transition_mat = transition_mat_dict[word]

if hmm_dict:

states = hmm_dict[word] .distributions
word_mask = df['word']==word
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word_X = X[word_mask]

path, viterbi_mat = viterbi(word_X, transition_mat, states)
viterbi_mat_softmax = softmax(viterbi_mat, axis=0)
viterbi_plot_data = viterbi_mat_softmax.transpose()[:,1:-1]
flat_axes[i] .plot(viterbi_plot_data, label=[*state_names[1:]])
flat_axes[i] .set_title(word)

handles, labels = flat_axes[0].get_legend_handles_labels()
fig.legend(handles, labels, loc='upper right')
plt.tight_layout(rect=[0, 0.05, 1, 1])
plt.show()

plot_viterbi(states, transition_mat=transition_mat_log)
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Much easier to interpret. Now we can see the transition between phones very clearly. How does
this compare to a plot of probabilities using just GMMs, no state transitions from HMMs?

[41]: fig, axes = plt.subplots(nrows=3,ncols=2)
flat_axes=axes.flatten()
for i, word in enumerate(words):
word_mask = df['word']==word
word_X = X[word_mask]
word_Y = df.loc[word_mask, 'phone'].tolist()
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gmm_likelihoods = torch.zeros((len(word_X),len(states)))

for j,state in enumerate(states):

state_prob = state.log_probability(word_X)

gmm_likelihoods[:,jl=state_prob

gmm_softmax = softmax(gmm_likelihoods, axis=1)
flat_axes[i] .plot(gmm_softmax, label=[*state_names[1:]1])

flat_axes[i] .set_title(word)

handles, labels = flat_axes[0].get_legend_handles_labels()

fig.legend(handles, labels, loc='upper right')
plt.tight_layout(rect=[0, 0.05, 1, 1]1)

plt.show()
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Pretty similar overall, though the GMM plots are a bit noisier, as can be seen in the dip in [n]
probability in the onset for ‘knee’ or the fact that [a] and [l] cross over each other at the end of
‘gnaw’, as if the word were [nal]. This shows that the HMM is doing some work to smooth over

the phone transitions.

8 Fitting HMM-Gaussian

(Jurafsky & Martin 2009, Ch. 6, p. 187; Ch. 9 p. 308)
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[42]:

[43]:

To keep things simple, we’re going to stick with non-mixed Gaussians for training our toy Forced
Aligner, hence the section title “HMM-Gaussian” rather than “HMM-GMM”.

By now we’ve discussed how to use an HMM to for likelihood estimation and decoding, however
we dealt with an HMM that was fit to hand-segmented data. Ideally, though, we’d like to be able
to use an HMM without having to hand-segment the data we run it on. To this end, we can use
unsupervised training with Expectation Maximization (EM).

The general idea behind EM for HMM-GMM training is this: The parameters of the HMM-GMM
should ideally represent the distribution of phone and acoustic sequences we observe in the real
world. Using a dataset of speech, we can calculate the average number of transitions between states
and emissions of acoustic observations by states that the model predicts for the speech data. If
we represent the parameters for transition and emission probability as a and b respectively, we can
say that a and b are the expected number of transitions and emissions given the dataset. These
latter values are likely to be closer to the ground truth distribution of transitions and emissions
than the original model parameters, so we can substitute a and b in for a and b, then repeat the
process again until we've converged. For more reading on training with EM (beyond the Jurafsky
& Martin textbook), see this medium article on HMM-GMM for speech recognition and medium
article for Expectation Maximization

First, since we're not assuming any presegmented data, let’s fit each Gaussian model to the entire
dataset of acoustic observations (that is, each phone state will actually be modeling all phones at
once!)

bw_states = [Normal().fit(X) for _ in range(4)]

For the transition states, we’ll actually create a different matrix for each word. After all, though we
don’t know the exact transition probabilities, we do know that for a given word, only a subset of
transitions are possible. Namely, a given phone can either transition into itself or into the following
state. It cannot skip a phone, nor can it transition to a previous phone. We can model this by
setting for each state an equal probability of transitioning to itself or to the next phone in the
sequence. For the initial state, we simply give a probability of 1 that it will transition into the first
phone state of the word.

!

# state_mnames = '"ailn’

# words = ['lawn', 'lean', 'kneel', 'knee', 'gnaw']
words_ipa = df['word_ipa'].unique()
word_transitions = {}

for word, word_ipa in zip(words, words_ipa):
word_trans_mat = torch.zeros((6,6))
# only one possible transition from initial state
word_trans_mat[0,state_names.index(word_ipal[0])]=1
for i, char in enumerate(word_ipa):
char_i = state_names.index(char)
if i < len(word_ipa)-1:
next_char = word_ipal[i+1]
next_char_ i = state_names.index(next_char)
else:
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next_char = '$'
next_char_ i = -1
# equal likelihood transition to self or nezxt char
word_trans mat[char_ i, next char_i] = 0.5
word_trans_mat[char_i, char_i] = 0.5
word_transitions[word]=word_trans_mat

word_transitions

[43]: {'lawn': tensor([[0.0000, 0.0000, 0.0000, 1.0000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000, 0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000, 0.5000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.5000, 0.5000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]1),

'lean': tensor([[0.0000, 0.0000, 0.0000, 1.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.5000, 0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000, 0.5000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.5000, 0.5000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]11),

'kneel': tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.0000],

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.5000, 0.5000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.5000, 0.0000, 0.5000],
[0.0000, 0.0000, 0.5000, 0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]1),
'knee': tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.5000, 0.0000, 0.0000, 0.5000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.5000, 0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]1),
'gnaw': tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.0000],
[0.0000, 0.5000, 0.0000, 0.0000, 0.0000, 0.5000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000, 0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]1)%}

Now let’s take the log of these matrices.

[44]: word_transitions_log = {k:v.log() for k,v in word_transitions.items()}
word_transitions_log

[44]: {'lawn': tensor([[ -inf, -inf, -inf, 0.0000, -inf, -inf],
[ -inf, -0.6931, -inf, -inf, -0.6931, -inf],
[ -inf, -inf, -inf, -inf, -inf, -inf],
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[45]:

[45] :

[ -inf,

[ -inf,

[ —-inf,

'lean': tensor([[ -
-inf,
-inf,

[
[
[ -inf,
[
[

-0.

-inf,
-inf,
'kneel': tensor([[
[ -inf,
[ -inf,
[ -inf,
[ —-inf,

[ -inf,
tensor ([[ -
-inf,
-inf,

[
[
[ -inf,
[
[

'knee':

-inf,

-inf,
'gnaw': temsor([[ -
[ -inf, -0.
[ -inf,
[ -inf,
[ -inf,
[ -inf,

6931,
-inf,
-inf,
inf,

-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
-inf,
inf,

-inf,
-inf,
-inf,
-inf,
-inf,
inf,

6931,
-inf,
-inf,

.6931,

-inf,

-inf, -0.6931,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-0.6931, -inf,
-0.6931, -0.6931,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-0.6931, -0.6931,
-inf, -0.6931,
-0.6931, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-0.6931, -inf,
-inf, -inf,
-0.6931, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,
-inf, -inf,

-inf,
-0.6931,
-inf,
0.0000,
-inf,
-0.6931,
-inf,
-0.6931,
-inf,
-inf,
-inf,
-inf,
-inf,
-0.6931,
-inf,
-inf,
-inf,
-inf,
-inf,
-0.6931,
-inf,
-inf,
-inf,
-inf,
-inf,
-0.6931,
-inf,

-0.

-0.

0.

-0.

0.0000,

-0.

0.0000,
-0.

-inf,

-inf],

69317,
-inf]]1),
-inf],
-inf],
-inf],
-inf],
693117,
-inf]]),
0000,
-inf],
-inf],
69317,
-inf],
-inf]]),

-inf],

-inf],
-inf],

693117,

-inf],

-inf],
-inf]]),
-inf],
693117,

-inf],

-inf],

-inf],

-inf]1)}

Next we initialize a different HMM for each word using the respective transition probabilities, with
each HMM having the same set of Gaussian distributions for modeling observations as the other

HMDMs.
{}

word_hmms =

for word in words:

word_hmm = DenseHMM()
word_hmm.add_distributions(bw_states)
add_hmm_edges(word_hmm, word_transitions[word], bw_states)
word_hmms [word] =word_hmm
word_hmms['lawn'].edges, word_hmms['lawn'].starts

(tensor ([[-0.6931,

[ -inf,
[-0.6931,
[ -inf,

-inf,
-inf,
-inf,
-inf,

-inf,
-inf,
6931,
-inf,

-0.

tensor([-inf, -inf, 0., -inf]))

-0

-0.

.6931]
-inf]
-inf]

693111),

Now that we’ve initialized our models, let’s go about estimating our new parameters for transition
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and observation probabilities. To estimate the expected transition or emission probabilities over the
whole dataset, we’ll want to first be able to estimate the expected transition or emission probability
for a particular state at a particular point in time, and then build up the average expected value
from there.

Earlier, we calculated the forward probability for a state and time in a given sequence, represented
as ay(i). This is equivalent to the probability of all paths leading into state ¢ at time ¢. This is
not, however, the absolute probability of being in state ¢ at time ¢t. To calculate that, we need to
consider the probability of all paths leading out from state 7 at time ¢ going into the final state.
This is the backward probability, [5,(i).

To calculate the backward probability, we essentially reverse the forward algorithm: we start at
the final timestep and set S, (i) as the emission probability of observation o, by state i times the
probability of state ¢ transitioning into the final state ¢p. Then for each preceding timestep ¢, sum
up the product of the backwards probability for time ¢ 4+ 1 for all states with the probability of
1 transitioning into each respective state times the emission probability of o, by state ¢ until we
reach the beginning of the sequence. The value stored for the initial state at ¢ = 0 in the backward
matrix is equivalent to the overall sequence probability, just like the value stored for the final state
at the final timestep in the forward matrix was the overall sequence probability.

[46]: def backward(observations, transition_mat_log, states):
backward _mat = torch.full((len(states)+2,len(observations)), -torch.inf)
# final timestep
backward_mat[-1,-11=0 # always end in final state
final observation = observations[-1]
for i, state in enumerate(states, start=1):
transition_logprob=transition_mat_log[i,-1]
emission_logprob=state.log_probability(final_observation.reshape([1,2]))
backward_mat[i,-1]=transition_logprob+emission_logprob
# remaining timesteps
for t, observation in reversed_enum(observations[:-1]):
for i, curr_state in enumerate(states, start=1):
emission_logprob = curr_state.log_probability(observation.
~reshape([1,2])) .item()
logprobs = torch.zeros(len(states))
for j, _ in enumerate(states, start=1):
transition_logprob = transition_mat_logli, j]
next_backward = backward_mat[j,t+1]
logprobs[j-1]=next_backward+transition_logprob
logprob=add_logprobs (logprobs)
logprob+=emission_logprob
backward_mat [i,t]=logprob
# transitions to initial state
init_logprobs = torch.zeros(len(states))
for i, state in enumerate(states, start=1):
transition_logprob=transition_mat_log[0,1i]
next_backward = backward_mat[i,0]
init_logprobs[i-1]=transition_logprob+next_backward
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[46] :

[47]:

[47] :

[48] :

logprob=add_logprobs(init_logprobs)
backward_mat [0,0]=logprob
return logprob, backward_mat
back_logprob, backward_mat = backward(word_observations, transition_mat_log,,
~states)
back_logprob

-328.11138916015625

As a sanity check, let’s make sure we get (roughly) the same value for the forward algorithm on
the same sequence.

forward_logprob, forward_mat = forward(word_observations, transition_mat_log,,
~states)
forward_logprob

-328.11163330078125

Now that we have both forward and backward probabilities available, we can now compute &, (i, j)
and v,(7). &(i,7) is the probability that from time ¢ and ¢ + 1, we transition from state i to j.

Recall that the forward and backward variables store the probability over all possible subpaths
up to time ¢ in their given direction. For &,(4, ), we are concerned with one specific path between
timesteps ¢ and ¢ + 1 (the path from i to j), but for all other timesteps we are not considering any
one path in particular. For this reason, we can model &, (i, j) as:

6(1,) = 2P

Where o, (i)B3,,1(j) can be thought of as the probability of all paths leading to the transition
between i and j in question, a,;;b;(0, + 1) is the probability of the transition itself, and ar(qg) is
the overall probability of the entire sequence. Note we wouldn’t want to consider b,(¢) since the
forward variable a, (i) already includes this probability in its definition. By dividing by ar(¢r),
we consider the probability of the transition given the sequence it takes place in, rather than the

absolute probability the HMM would predict.

def ksi(i, j, t, observations, forward, backward, transition_mat_log, states):

nmnn

i and 7 in [start, *states, end]
forward_i = forward[i,t]
backward_j = backward[j,t+1]
transition = transition_mat_logl[i, j]
if (j==len(states)+1l) or (j==-1):
# can't transition to final state before final timestep
if t<len(observations)-1:
return float('-inf')
# else emission probability is 1 (log(1)=0) when transitioning to finaly
wstate at final timestep
emission = O
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else:
emission = states[j-1].log_probability(observations[t+1].
oreshape([1,2])) .item()

seq_prob = forward[-1,-1]
if seq_prob == float('-inf'):
return float('-inf')

ksi_val = forward_i + backward_j + transition + emission - seq_prob
return ksi_val

ksi(
3,
2,
len(word_observations)-15,
word_observations,
forward (word_observations, transition_mat_log, states)[1],
backward(word_observations, transition_mat_log, states)[1],
transition_mat_log=transition_mat_log,
states=states,

[48] : tensor(-406.9579)

In addition to &,(, j), we also compute 7,(¢). This is equivalent to the probability of being in state
i at time ¢t and emitting observation o,. Since «,(7) is the probability of all paths leading into state
i at time ¢, and §,(7) is the probability of all paths going out of state i at time ¢, we can calculate

74 (i) as:

Where ap(gp) again scales the probability relative to the overall probability of the sequence.

[49]: def gamma(i, t, forward, backward):

mnimnn

i in [start, *states, end]

forward i = forward[i,t]

backward_i = backward[i,t]

seq_prob = forward[-1,-1]

return forward_i + backward_i - seq_prob

gamma (
3’
len(word_observations)-15,
forward(word_observations, transition_mat_log, states)[1],
backward(word_observations, transition_mat_log, states) [1],
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[49] : tensor(-664.5364)

[60]: def a_hat(i, observations, transition_mat_log, states):
nmnn

% and j in [start, *states, end]

ksi_sums = torch.full((len(states),), float('-inf'))
_, forward_mat = forward(observations, transition_mat_log, states)
_, backward_mat = backward(observations, transition_mat_log, states)

for j in range(l, len(states)+1):
ksi_j = torch.full((len(observations),), float('-inf'))
for t in range(len(observations)-1):
ksi_log =,
~ksi(i,j,t,observations,forward_mat,backward_mat,transition_mat_log,states)
ksi_j[t]l=ksi_log
ksi_sums[j-1]=add_logprobs(ksi_j)

total_ksi = add_logprobs(ksi_sums)
if total_ksi == float('-inf'):
return torch.full((len(states),), float('-inf'))
a_hat_vec = ksi_sums - total_ksi
return a_hat_vec

a_hat (1,word_observations,word_transitions_log['lawn'],states)

/var/folders/bt/_dsrh61d2yncbnn9vk_d21cc0000gp/T/ipykernel _99367/1710079399.py:9
: RuntimeWarning: divide by zero encountered in log
logprob_sum=np.log(probs_sum)

[50]: tensor([-3.5322e-04, -inf, -inf, -7.9486e+00])

[61]: def mu_sigsq hat(i, observations, transition_mat_log, states):

nmnn

i in [start, *states, end]

nmnn

_, forward_mat = forward(observations, transition_mat_log, states)
_, backward_mat = backward(observations, transition_mat_log, states)

# convert to numpy since we'll be using floatl28

observations = observations.numpy ()

gamma_vec_log = np.array(
[gamma (i, t,forward_mat,backward_mat) for t in range(len(observations))],
dtype=np.float128,

)

gamma_vec = np.exp(gamma_vec_log)

weighted_observations = observations*gamma_vecl[:,None]
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mu_hat = weighted_observations.sum(axis=0)/gamma_vec.sum()

observation_minus_mean = observations-mu_hat

observation_minus_mean_dot = np.stack([column[:,None]@column[None,:] for,
~column in observation_minus_mean])

numerator = observation_minus_mean_dot * gamma_vec[:,None,None]

sigma_hat = numerator.sum(axis=0)/gamma_vec.sum()

sigma_hat = torch.tensor(sigma_hat.astype(np.floaté4))
mu_hat = torch.tensor(mu_hat.astype(np.float64))

return mu_hat, sigma_hat

mu_sigsq_hat(l, word_observations, transition_mat_log, states)

[51]: (tensor([-12.3937, 5.2621], dtype=torch.float64),
tensor ([[20.7811, -9.6813],
[-9.6813, 6.1762]], dtype=torch.float64))

[62]: def em_step(df, X, hmm_dict, word_transitions_dict, phones):
num_states = len(list(hmm_dict.values()) [0].distributions)
state_means = torch.zeros((num_states, 2))
state_covs = torch.zeros((num_states, 2, 2))
new_transitions={}
for word in df['word'].unique():

word_mask = df['word']==word

word_ipa = df.loc[word_mask, 'word_ipa'l].ilocl[0]

state_idcs = list(set(phones.index(c)+1 for ¢ in word_ipa))
word_feats = X[word_mask]

word_hmm = hmm_ dict [word]

states = word_hmm.distributions

word_trans mat = word_transitions_dict [word]

new_transition_mat = torch.full like(word_trans mat, —torch.inf)
new_transition mat[0] = word trans mat[0] # 4nitial transition,
~probabilities don't change
for i in state_idcs:
# expected transition probabilities
a_hat vec = a_hat(i, word_feats, word_trans mat, states)
print(word, i, a_hat_vec)
# set transition probs for state t for given word
new_transition_mat[i,1:-1]=a_hat_vec

# collect emission probabilities

mu_hat_vec, sigmasq_hat_mat = mu_sigsq_hat(i, word_feats,
wword_trans_mat, states)

weight_for_avg = len(word_feats)/len(df)
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state_means[i-1]+=mu_hat_vec*weight_for_avg
state_covs[i-1]+=sigmasq_hat_mat*weight_for_avg
print(new_transition_mat)
add_hmm_edges (word_hmm, torch.exp(new_transition_mat), states)
new_transitions[word]=new_transition_mat
for i in range(l,num_states):
states[i-1] .means=torch.nn.Parameter (torch.tensor(state_means[i-1]),.,
wrequires_grad=False)
states[i-1].covs=torch.nn.Parameter (torch.tensor(state_covs[i-1]),
srequires_grad=False)
return new_transitions, states

[63]: plot_viterbi(hmm_dict=word_hmms, transition_mat_dict=word_transitions_log)
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—_
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kneel knee
1.0 1.0 4 \
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0'0 E T T T T T D'o E T T T
0 20 40 60 80 0 20 40
gnaw
1.0 \ 1.0
0.5 - l \ | 0.5
0'0 E T T T D.O T T T T
0 20 40 0.0 0.2 0.4 0.6 0.8 1.0

[64]: plot_gaussians(bw_states)
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[ ]: trained_transitions = word_transitions_log
for i in range(5):
trained_transitions, trained_states=em_step(df, X, word_hmms,,
~trained_transitions, phones)
plot_viterbi(hmm_dict=word_hmms, transition_mat_dict=trained_transitions)

[56]: plot_gaussians(trained_states)
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Seed Gaussians from k-means clusters

[67]: cluster_means = torch.tensor(kmeans.cluster_centers_)
cluster_vars = torch.zeros(4,2)
seeded_states = []
for i, _ in enumerate(phones):

cluster_mask = y_hat==i

cluster_points = X[cluster_mask]

var = X[cluster_mask] .var(dim=0)

cluster_vars[i]=var

seeded_states.append (Normal (
means=cluster_means[i],
covs=var,
covariance_type='diag'

))

seeded_states, cluster_means, cluster_vars

[57]: ([Normal(), Normal(), Normal(), Normal()],
tensor([[ 2.7162, -13.0293],
[-21.9970, 8.7712],
[ 16.7898, 4.5764],
[ -6.7494, 3.5071]], dtype=torch.float64),

46




tensor ([[ 9.9449, 3.3919],
[34.1531, 7.5984],
[22.8406, 5.9092],

[12.9050, 10.3579]11))

[58]: plot_gaussians(seeded_states)
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[59]: seeded_hmms = {}

for word in words:
word_hmm = DenseHMM()

word_hmm.add_distributions(seeded_states)
add_hmm_edges (word_hmm, word_transitions[word], seeded_states)

seeded_hmms [word] =word_hmm

seeded_hmms['lawn'] .edges, seeded_hmms['lawn'].starts

[59]: (tensor([[-0.6931, -inf, -inf,
[ -inf, -inf, -inf,
[-0.6931, -inf, -0.6931,
[ -inf, -inf, -inf,

tensor([-inf, -inf, 0., -inf]))

-0

.6931],

-inf],
-inf],

.693111),
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[60]: plot_viterbi(hmm_dict=seeded_hmms, transition_mat_dict=word_transitions_log)
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[62]:
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trained_transitions = word_transitions_log

for i in range(1):
trained_transitions,trained_states=em_step(df, X, seeded_hmms,,,

~trained_transitions, phones)
plot_viterbi(hmm_dict=seeded_hmms, transition_mat_dict=trained_transitions)

plot_gaussians(trained_states)
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